3.545 \(\int \frac{\sec ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=380 \[ \frac{b \left (-26 a^2 b^2+3 a^4+15 b^4\right ) \sin (c+d x)}{3 a^3 d \left (a^2-b^2\right )^2 \sqrt{a+b \cos (c+d x)}}+\frac{b \left (3 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}+\frac{\left (3 a^2-5 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}-\frac{\left (-26 a^2 b^2+3 a^4+15 b^4\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right )^2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}-\frac{5 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a^3 d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d (a+b \cos (c+d x))^{3/2}} \]

[Out]

-((3*a^4 - 26*a^2*b^2 + 15*b^4)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*a^3*(a^2 -
b^2)^2*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((3*a^2 - 5*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(
c + d*x)/2, (2*b)/(a + b)])/(3*a^2*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) - (5*b*Sqrt[(a + b*Cos[c + d*x])/(a
 + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(a^3*d*Sqrt[a + b*Cos[c + d*x]]) + (b*(3*a^2 - 5*b^2)*Sin[c
+ d*x])/(3*a^2*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)) + (b*(3*a^4 - 26*a^2*b^2 + 15*b^4)*Sin[c + d*x])/(3*a
^3*(a^2 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]]) + Tan[c + d*x]/(a*d*(a + b*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 1.0999, antiderivative size = 380, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 11, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.478, Rules used = {2802, 3056, 3055, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ \frac{b \left (-26 a^2 b^2+3 a^4+15 b^4\right ) \sin (c+d x)}{3 a^3 d \left (a^2-b^2\right )^2 \sqrt{a+b \cos (c+d x)}}+\frac{b \left (3 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}+\frac{\left (3 a^2-5 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}-\frac{\left (-26 a^2 b^2+3 a^4+15 b^4\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right )^2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}-\frac{5 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a^3 d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d (a+b \cos (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

-((3*a^4 - 26*a^2*b^2 + 15*b^4)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*a^3*(a^2 -
b^2)^2*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((3*a^2 - 5*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(
c + d*x)/2, (2*b)/(a + b)])/(3*a^2*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) - (5*b*Sqrt[(a + b*Cos[c + d*x])/(a
 + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(a^3*d*Sqrt[a + b*Cos[c + d*x]]) + (b*(3*a^2 - 5*b^2)*Sin[c
+ d*x])/(3*a^2*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)) + (b*(3*a^4 - 26*a^2*b^2 + 15*b^4)*Sin[c + d*x])/(3*a
^3*(a^2 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]]) + Tan[c + d*x]/(a*d*(a + b*Cos[c + d*x])^(3/2))

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx &=\frac{\tan (c+d x)}{a d (a+b \cos (c+d x))^{3/2}}+\frac{\int \frac{\left (-\frac{5 b}{2}+\frac{3}{2} b \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx}{a}\\ &=\frac{b \left (3 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{\tan (c+d x)}{a d (a+b \cos (c+d x))^{3/2}}+\frac{2 \int \frac{\left (-\frac{15}{4} b \left (a^2-b^2\right )+\frac{3}{2} a b^2 \cos (c+d x)+\frac{1}{4} b \left (3 a^2-5 b^2\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx}{3 a^2 \left (a^2-b^2\right )}\\ &=\frac{b \left (3 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{b \left (3 a^4-26 a^2 b^2+15 b^4\right ) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d (a+b \cos (c+d x))^{3/2}}+\frac{4 \int \frac{\left (-\frac{15}{8} b \left (a^2-b^2\right )^2+\frac{1}{4} a b^2 \left (9 a^2-5 b^2\right ) \cos (c+d x)-\frac{1}{8} b \left (3 a^4-26 a^2 b^2+15 b^4\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )^2}\\ &=\frac{b \left (3 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{b \left (3 a^4-26 a^2 b^2+15 b^4\right ) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d (a+b \cos (c+d x))^{3/2}}-\frac{4 \int \frac{\left (\frac{15}{8} b^2 \left (a^2-b^2\right )^2-\frac{1}{8} a b \left (3 a^4-8 a^2 b^2+5 b^4\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{3 a^3 b \left (a^2-b^2\right )^2}-\frac{\left (3 a^4-26 a^2 b^2+15 b^4\right ) \int \sqrt{a+b \cos (c+d x)} \, dx}{6 a^3 \left (a^2-b^2\right )^2}\\ &=\frac{b \left (3 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{b \left (3 a^4-26 a^2 b^2+15 b^4\right ) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d (a+b \cos (c+d x))^{3/2}}-\frac{(5 b) \int \frac{\sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{2 a^3}+\frac{\left (3 a^2-5 b^2\right ) \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx}{6 a^2 \left (a^2-b^2\right )}-\frac{\left (\left (3 a^4-26 a^2 b^2+15 b^4\right ) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{6 a^3 \left (a^2-b^2\right )^2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}\\ &=-\frac{\left (3 a^4-26 a^2 b^2+15 b^4\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{b \left (3 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{b \left (3 a^4-26 a^2 b^2+15 b^4\right ) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d (a+b \cos (c+d x))^{3/2}}-\frac{\left (5 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{2 a^3 \sqrt{a+b \cos (c+d x)}}+\frac{\left (\left (3 a^2-5 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{6 a^2 \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}\\ &=-\frac{\left (3 a^4-26 a^2 b^2+15 b^4\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{\left (3 a^2-5 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 a^2 \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}-\frac{5 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a^3 d \sqrt{a+b \cos (c+d x)}}+\frac{b \left (3 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{b \left (3 a^4-26 a^2 b^2+15 b^4\right ) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d (a+b \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 6.52516, size = 638, normalized size = 1.68 \[ \frac{\sqrt{a+b \cos (c+d x)} \left (-\frac{2 b^3 \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac{4 \left (5 a^2 b^3 \sin (c+d x)-3 b^5 \sin (c+d x)\right )}{3 a^3 \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac{\tan (c+d x)}{a^3}\right )}{d}-\frac{b \left (\frac{2 \left (20 a b^3-36 a^3 b\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}+\frac{2 \left (-86 a^2 b^2+33 a^4+45 b^4\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}-\frac{2 i \left (-26 a^2 b^2+3 a^4+15 b^4\right ) \sin (c+d x) \cos (2 (c+d x)) \sqrt{\frac{b-b \cos (c+d x)}{a+b}} \sqrt{-\frac{b \cos (c+d x)+b}{a-b}} \left (2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )+b \left (2 a F\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )-b \Pi \left (\frac{a+b}{a};i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )\right )}{a \sqrt{-\frac{1}{a+b}} \sqrt{1-\cos ^2(c+d x)} \sqrt{-\frac{a^2-2 a (a+b \cos (c+d x))+(a+b \cos (c+d x))^2-b^2}{b^2}} \left (2 a^2-4 a (a+b \cos (c+d x))+2 (a+b \cos (c+d x))^2-b^2\right )}\right )}{12 a^3 d (b-a)^2 (a+b)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

-(b*((2*(-36*a^3*b + 20*a*b^3)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[
a + b*Cos[c + d*x]] + (2*(33*a^4 - 86*a^2*b^2 + 45*b^4)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c +
d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] - ((2*I)*(3*a^4 - 26*a^2*b^2 + 15*b^4)*Sqrt[(b - b*Cos[c + d*
x])/(a + b)]*Sqrt[-((b + b*Cos[c + d*x])/(a - b))]*Cos[2*(c + d*x)]*(2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a
+ b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*(2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a
 + b*Cos[c + d*x]]], (a + b)/(a - b)] - b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c
 + d*x]]], (a + b)/(a - b)]))*Sin[c + d*x])/(a*Sqrt[-(a + b)^(-1)]*Sqrt[1 - Cos[c + d*x]^2]*Sqrt[-((a^2 - b^2
- 2*a*(a + b*Cos[c + d*x]) + (a + b*Cos[c + d*x])^2)/b^2)]*(2*a^2 - b^2 - 4*a*(a + b*Cos[c + d*x]) + 2*(a + b*
Cos[c + d*x])^2))))/(12*a^3*(-a + b)^2*(a + b)^2*d) + (Sqrt[a + b*Cos[c + d*x]]*((-2*b^3*Sin[c + d*x])/(3*a^2*
(a^2 - b^2)*(a + b*Cos[c + d*x])^2) - (4*(5*a^2*b^3*Sin[c + d*x] - 3*b^5*Sin[c + d*x]))/(3*a^3*(a^2 - b^2)^2*(
a + b*Cos[c + d*x])) + Tan[c + d*x]/a^3))/d

________________________________________________________________________________________

Maple [B]  time = 14.145, size = 1320, normalized size = 3.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+b*cos(d*x+c))^(5/2),x)

[Out]

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4/a^3*b^2/sin(1/2*d*x+1/2*c)^2/(-2*sin(1/2*d*x
+1/2*c)^2*b+a+b)/(a^2-b^2)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a
-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c)
,(-2*b/(a-b))^(1/2))*b+2*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)+4/a^3*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b
*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticP
i(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))+2/a^2*b^2*(1/6/b/(a-b)/(a+b)*cos(1/2*d*x+1/2*c)*(-2*b*sin(1/2*d*x+1
/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2+1/2*(a-b)/b)^2+8/3*b*sin(1/2*d*x+1/2*c)^2/(a-b
)^2/(a+b)^2*cos(1/2*d*x+1/2*c)*a/(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)+(3*a-b)/(3*a^3+
3*a^2*b-3*a*b^2-3*b^3)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2
*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-4/3*a/(a-b)/(
a+b)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a
+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-EllipticE(cos(1/2*d*x+1/2*c)
,(-2*b/(a-b))^(1/2))))+2/a^2*(-cos(1/2*d*x+1/2*c)/a*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/
2)/(2*cos(1/2*d*x+1/2*c)^2-1)+1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-
2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-1/
2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*s
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*E
llipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^
2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c)
,2,(-2*b/(a-b))^(1/2))))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^2/(b*cos(d*x + c) + a)^(5/2), x)